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Tensile strength of ceramic powders 

D. BORTZMEYER 
Rhdne Poulenc Recherches, 52 rue de la Haie Coq, 93308 Aubervilliers Cedex, France 

The tensile strength of granular materials has been extensively studied and is of great techno- 
logical importance. Several theoretical or experimental relationships between density and 
strength have been proposed. This paper compares these models with experimental data from 
zirconia powders. It is shown that the most important parameter determining the strength of a 
green compact is not density but compaction pressure. A micromechanical model, which 
gives a qualitative understanding of ceramic powder behaviour under tensile stress, is also 
presented. 

1. I n t r o d u c t i o n  
Fracture of pieces is a common problem in ceramic 
technology. It is encountered in every shape-forming 
process: compaction (during ejection); slip casting 
(during drying); and injection (during pyrolysis). Thus 
a fundamental understanding is needed of both the 
driving forces for fracture (residual stresses after com- 
paction, for example) and the mechanisms of cohesion 
in a green compact. The former will be achieved 
through the study of powder rheology, and finite 
element calculation [1-3]. The latter is discussed in 
this paper. 

The most simple way for determining the tensile 
strength of a green compact is to count the number of 
particle/particle bonds in the failure plane [4]. This 
calculation is tedious but quite simple. In this case we 
suppose that all bonds display the same cohesion, fo, 
and are broken at the same time. The result for a 
random packing of monosized particles is [3] 

fop ot  - (1) 
4(1 - p)r 2 

where P is the relative density, and r the particle 
radius. For  a powder without binder, the attraction 
force between two particles is the Van der Waals force 
[5-7] 

Ar 
fo - 12z~ (2) 

where A is the Hamaker constant and z o the smallest 
possible distance between two particles. Of course, 
other factors may also contribute to the cohesion 
(hydrogen bonds or capillarity, for example) but we 
will suppose them negligible. Combining Equations ! 
and 2 

A 9  
- ( 3 )  ot  48z02(1 - p)r 

F o r  oxides,  A is ~ 10-  t9 j [5];  the e s t i m a t e d  va lue  for 

z o is 0.4 nm;  us ing  r = 0.5 g m  and  p = 0.5, we o b t a i n  

cyt = 0.03 M P a  which  is a r a the r  g o o d  o r d e r  of  m a g n i -  

tude,  as we will  see. 

However, this calculation is not very satisfactory as 
the particle/particle bonds crossing the fracture plane 
are not broken at the same time but (as might be 
expected in a brittle material) one after one, as the 
result of a crack propagation. This point has been 
widely discussed by Kendall [8] and Adams et al. [9]; 
in fact, only the rupture energies of these contacts 
might be summed. Kendall calculated the tensile 
strength of several regular packings of monosized 
particles, and extrapolated the behaviour of a random 
one from these data. His formula is 

15.694F~/6F~/6 

q t  = (2rc)1/2 (4) 

where c is the crack length, and FR and F E are surface 
energies measured by rupture and modulus experi- 
ments, respectively. This method is indeed better; 
however, the notion of 'crack' is not well defined in a 
granular material: when does a pore become a crack? 

With c r t = 0 . 1 M P a  (Fig. 1), r=0 .51am and 
P = 0.5, we obtain 

F = IOOc 1/2 

where F = F R = F z is the classical surface energy. In 
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Figure 1 Tensile strength against density, powder TM: comparison 
between experimental results and theoretical predictions. , ,  Equa- 
tion 3; II, Equation 4; 3 ,  experiment. 
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our case, F is about 80 J m-  2 (from tensile strength on 
sintered parts) which gives an unrealistic value for c. 
From his experiments on titanium dioxide, Kendall 
[10] found F = 14Jm -2, and c = 60 ~tm. This corres- 
ponds to higher values of cyt. 

2. Experimental procedure 
The tensile strength of dry-pressed samples of zirconia 
powder was measured using the so-called diametral 
compression test (Fig. 2). Despite some limitations 
concerning the exact stress state in the disk [11], it is 
usually recognized that this test gives a good approx- 
imation of the true material tensile strength [12-14]. 
Another example of a tensile test, where the green 
is tested in the compaction mould, is given in [15]. 

The specimens were 3 cm in diameter, their height 
between 0.5 and, 0.8 cm. Pieces were heated 24h at 
100~ before the test. All were broken along the 
diametral plane, which is the usual criterion for the 
test validity. 

To assess the influence of particle size, we used a 
commercial zirconia powder named TM (YZ 3 from 
Rh6ne-Poulenc) in the following, which was classified 
with a sedimentation process to obtain three powders 
of different particle size (Table I). This powder was 
also granulated (without binder) by spray drying to 
investigate the influence of granulation (powder Tg). 
Another very different zirconia powder (D; YZ 3 from 
Daichi Corporation) was also used. 

F 

3. Resul ts  and discussion 
Although our powders are not monosized, we may 
expect Equation 3 or 4 to predict at least approxi- 
mately their behaviour (the values of A/z~ in Equation 
3, and FIe 1/2 in Equation 4, were chosen to fit the 
experimental value of ~t for p -  0.5). By contrast, 
Fig. 1 shows clearly that it is not the case. Had we 
taken into account other interparticle forces, neither 
equation would apply as its density dependence would 
not change. 

Tensile strength against de~i ty  curves for our dif- 
ferent powders (Fig. 3) allowed us to determine the 
tensile strength as a function of mean particle size, for 
a given density. This curve is compared with the 
theoretical predictions (Fig. 4). Once again, the theor- 
etical relationships are not verified. Thus another 
model is needed. 

Fig. 5 shows the tensile strength as a function of 
compaction pressure: for a given pressure, the tensile 
strength is the same for all the powders, although the 
density might be very different. Even the Tg and D 
powders, whose tensile stresses are rather different for 
a given density, lie on the same curve. 

In order to explain this result, let us introduce a very 
simple model. Let P be the compaction pressure, and s 
the total surface of the interparticle contacts crossing a 
plane perpendicular to the compaction axis, per unit 
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Figure 3 Tensile strength against density for the different powders. 
[], TMf; 4,, TMm; I ,  TMG; 4,,  Tg; II, D. 

Figure 2 Diametral compression test: the stress state is tensile along 
the diameter joining the loading points. 

TABLE I Powder characteristics (granulometer: Cilas) 

Powder Mean Standard Specific surface 
diameter deviation (m 2 g- 1 ) 

dso (p-m) d 9 o  - -  d l o  

dso 

TM 0.59 2.30 7.00 
TMf 0.33 1.76 9.47 
TMG 0.92 2.07 5.97 
TMm 0.41 1.92 7.5 
Tg 80 (granules) 2.50 7.00 
D 0.76 3.5 
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Figure 4 Tensile strength against mean particle size, density 
3.0 gcm -3. ~ ,  TMf; O, TMm; I ,  TMG; ~', TM; I Equation 3; 
�89 Equation 4. 
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Figure 5 Tensile strength against compaction pressure for different 
powders. ~,  TMf; $', TMm; B, TMG; t1,, Tg; O, D. 

surface of this plane (Fig. 6). The mean stress acting on 
s is 

= P / s  

Considering the small surface area of interparticle 
contacts, s must be very small. Thus, ~ might over- 
come the yield strength ~y of the material, causing 
some crushing of the particle asperities. The equili- 
brium is obtained, through rearrangement and crush- 
ing, when cy = Cyy. c~y being approximately constant 
for all our powders, s must be the same for a given 
compaction pressure. Now suppose that ~t depends 
on s only: then c~t is the same function of P for all the 
powders, which is observed in Fig. 5. An explanation 
of this kind has also been given by Thompson [16]. 

This model is of course too simple: interparticle 
cohesion cannot be described only by a simple 'con- 
tact area' concept. It probably also involves some 
mechanical interlocking of particles, which depends 
on their roughness. Moreover, the strength of the 
green compacts is certainly influenced by their flaw 
size. However the model gives some physical insight 
into the mechanism of cohesion. 

4. N u m e r i c a l  s i m u l a t i o n  
In order to understand the behaviour of the powder 
on a microscopic scale, we realised a micromechanical 
model which simulates on a computer the behaviour 
of an assembly of rigid discs. In this calculation, the 
interparticle forces are known (Van der Waals, elastic 
repulsion, sliding friction) and the computer deter- 
mines the behaviour of the whole packing in a quasi- 
static deformation. This program has been used to 
simulate a pure tensile test on packings of several 
hundreds of discs [3]; here, the results for small 
packings will be described in order to emphasise the 
influence of the packing structure. 

For a regular packing, the fracture is brittle and the 
tensile strength is the sum of the contact forces of the 
bonds broken by the fracture plane (Fig. 7; the tensile 
strength in this case is 6 MPa due to the high inter- 
particle cohesion chosen). 

When the radii of half of the discs are randomly 
modified by a factor of 5%, the packing is still regular 

Figure 6 Contacts crossing a plane perpendicular to the com- 
paction axis in 2D. 
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Figure 7 Tensile test on a regular packing: (a) packing and (b) 
stress/strain relationship. 

at first sight (the number ofneighbours is always four). 
However, its behaviour during the tensile test is very 
different (Fig. 8). The tensile strength is now only 
4 MPa, the reason for which is clearly seen in Fig. 8: 
the packing is broken by the propagation of a crack. 
As a consequence, the fracture becomes more stable. 
This behaviour is a direct consequence of the strong 
modification ofinterparticle forces that arises from the 
modification of the radii (Fig. 9). This means that the 
behaviour of a random packing cannot be extra- 
polated directly from the behaviour of a regular one 
(this has also been demonstrated by Stauffer et  al. 

[17]). This might be the reason for the relative failure 
of Kendall's model to predict our experimental data. 

5. C o n c l u s i o n s  
Experimental tensile tests on ceramic green compacts 
have been performed. For a given compaction pres- 
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Figure 8 Tensile test on a regular packing with random variation of 
the radii: (a) packing and (b) stress/strain relationship. 

sure, the tensile strength is equal for several zirconia 
powders, whatever the mean size of the particles or the 
sample density. This result is in contradiction with 
most theoretical models; it suggests that the inter- 
locking of particles caused by the compaction loading 
might be the most important contribution to the 
overall strength. A micromechanical model has been 
used to determine the microscopic behaviour of 
packing during the tensile test. It shows that the 
randomness of a packing dramatically affects its beha- 
viour. In particular, the tensile strength is seriously 
decreased compared with a regular packing, because 
fracture happens through the propagation of a crack. 
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Figure 9 Interparticle forces before the tensile test, in (a) regular 
packing and (b) "nearly regular packing". The forces are represented 
by a bolt line, whose thickness is proportional to the force value. 
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